From Grasslands and Woodlands to Closed Forests: What Dendrochronology can tell us about Fire History and Landscapes Changes

Carson Sprenger, February 20th, 2019

Outline:

- Forests** and what factors help to define them?
- What's a "fire history" and why study this?
- 2004 Waldron study
- Other SJI fire studies
- Fire and forest health
- Role of charcoal

Please ask Q's any time!

**(mosaic of different habitat types)

What defines our forests?

- High geophysical variability
- Climate
- Soils
- Disturbance
 - Abiotic (wind, snow & ice)
 - Biotic (disease & insect)
- Fire

What else defines our forests?

- Human History?
- Big Influence
 - Pre-settlement
 - Fire
 - Post-settlement
 - Grazing/ farming/ clearing
 - Logging
 - Lack of Fire (fire exclusion & suppression)

Plants must be drought tolerant!

Friday Harbor average Precip 28 inches

Seattle 36 inches

Portland 43 inches

What is *Dendrochronology?*

• The science of dating events & events are environmental change through the study of tree rings.

• Can provide annual resolution.

What is a Fire History?

- Characterizes the role of fire in ecosystems.
- Describes the natural range of variability in fire frequency, severity, extent, and spatial complexity in a given system.

•

Case Study: Waldron Fire History

Fire History of a Douglas-fir—Oregon White Oak Woodland, Waldron Island, Washington (2011; Northwest Science)

Study Site

- 155 ha
- SE aspect
- Dry site
- Thin soils + outcrops

PSME woodland and forest

QUGA / PSME

QUGA and grasslands

Encroachment into open areas (grasslands & savannas)

1965 1998

Sampling Methods:

• Located multiple scarred trees

• Removed partial and full cross-sections

• Removed 20 tree cores for site chronology

(cross-dating)

Lab Methods

Sanded & aged

Scars identified

Dates assigned

Dates cross-dated against chronology

Analysis time periods:

- 1. Historic (1700-1879)
- 2. Settlement/modern (1880-2004)

Results

•15 of 29 samples cross-dated

• 62 total fire scars, 31 fire years from 1530 - 1908

Analysis period	No. of intervals	Mean (MFI)	Med	s.d.	Range	WMPI	87.5% WCI
Historic (1700-1879)	21	8.5	6.0	6.8	2-31	7.4	2.4-15.8
Settlement / modern (1880-2004)	3	37	10	51.2	5-96	-	-

Fire History

Results: Seasonality (scar position)

Dormant = Late Sept/October/November Late Season= July/August/September

Summary

- Despite decay, insect damage, ½ of samples unreadable,
 - Sampled Douglas-fir were effective recorders of fire events
 - Likely missed some fire events
- Historic FRI (7.4 yrs) is frequent, yet highly variable (2-31 yrs)
- Longer intervals lead to larger fires (increased fuel)
- Seasonality = late summer & fall

What caused these fires? Humans?

- 1) Lightning strikes rare, fire suppression nearly absent
- 2) Known coast Salish sites on Waldron
- 3) Long fire free periods
 (31 yrs from 1776-1807)
 (1908 to 2010)

Other Studies:

Lopez, Stuart Island, Henry Island, Patos Island

- Most sites burned every 7-15 years.
- Fires low-intensity.
- Ignition source likely human.
- Burning stopped 100-150 yrs ago.

Relationship of Fire Frequency to Fuels

Accumulation of woody fuel

Shift in Species Composition

- Longer Fire Return Interval = increase in fire intolerant species.
 - Grand fir
 - Hemlock
 - Cedar
 - = decrease in fire adapted species (oak, native grasses)

Management implications:

Current fire exclusion =

- Longest in last 500+ yrs.
- Structural and compositional changes
- Loss of woodlands and grasslands (encroachment)
- High fuel loads & increased risk of high severity fire

Management implications:

Current fire exclusion =

- Increase in overall forest cover
- Increase in overall tree density
- Greater susceptibility to drought
-insect & disease problems......
-and chances of Catastrophic fires!

Other Questions Related to Fire:

Other Questions Related to Fire:

Charcoal and its role in forest ecosystems.

- Important chemical connection between roots and mycorrhizae
- Functions as massive "hotel complex" for micro-organisms
- Stores carbon in soil (for centuries)
- Increases water holding capacity

Lack of new charcoal deposition may be contributing to declines in forest health

Other Questions Related to Fire:

Charcoal and its role in agricultural soils.

- Increases nutrient holding capacity (CEC)
- Improves tilth & micro-organism functions
- Stores carbon in soil (for centuries)
- Increases water holding capacity

C02 Release: Chip/Burn vs. Charcoal

Acknowledgements

Funding:

Center for the Study of Coast Salish Environments, UW College of Forest Resources

Field and Lab Help:

Sam Sprenger, Tillie Scruton, Mitchell Almaguer-Bay, Reed Wendel, Melanie Welch, Mike Tjoker, Mike Case, Jeremy Littell

Special Thanks:

Linda Brubaker, Jim Agee, Robert Gara

